Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407305

RESUMO

In this study, we synthesized Pt/g-C3N4 photocatalysts modified by a solvent etching process where ethanol (Pt/CN0), water (Pt/CN100), and a 50:50 mixture (Pt/CN50) were used as a solvent, and investigated the optimal properties of g-C3N4 to prepare the best Pt/g-C3N4 for photocatalytic hydrogen evolution. From diverse characterizations, water was proven to be a stronger solvent agent, resulting in not only the introduction of more O-functional groups onto the g-C3N4 surface, but also the degradation of a regular array of tri-s-triazine units in the g-C3N4 structure. While the addition of O-functional groups positively influenced the oxidation state of the Pt cocatalyst and the hydrogen production rate, the changes to g-C3N4 structure retarded charge transfer on its surface, inducing negative effects such as fast recombination and less oxidized Pt species. Pt/CN50 that was synthesized with the 50:50 solvent mixture exhibited the highest hydrogen production rate of 590.9 µmol g-1h-1, while the hydrogen production rates of Pt/CN0 (with pure ethanol solvent) and Pt/CN100 (with pure water solvent) were 462.7, and 367.3 µmol g-1h-1, respectively.

2.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055198

RESUMO

Recently, Pt-loaded graphic carbon nitride (g-C3N4) materials have attracted great attention as a photocatalyst for hydrogen evolution from water. The simple surface modification of g-C3N4 by hydrothermal methods improves photocatalytic performance. In this study, ethanol is used as a solvothermal solvent to modify the surface properties of g-C3N4 for the first time. The g-C3N4 is thermally treated in ethanol at different temperatures (T = 140 °C, 160 °C, 180 °C, and 220 °C), and the Pt co-catalyst is subsequently deposited on the g-C3N4 via a photodeposition method. Elemental analysis and XPS O 1s data confirm that the ethanol solvothermal treatment increased the contents of the oxygen-containing functional groups on the g-C3N4 and were proportional to the treatment temperatures. However, the XPS Pt 4f data show that the Pt2+/Pt0 value for the Pt/g-C3N4 treated at ethanol solvothermal temperature of 160 °C (Pt/CN-160) is the highest at 7.03, implying the highest hydrogen production rate of Pt/CN-160 is at 492.3 µmol g-1 h-1 because the PtO phase is favorable for the water adsorption and hydrogen desorption in the hydrogen evolution process. In addition, the electrochemical impedance spectroscopy data and the photoluminescence spectra emission peak intensify reflect that the Pt/CN-160 had a more efficient charge separation process that also enhanced the photocatalytic activity.

3.
Small ; 17(31): e2101729, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165888

RESUMO

Nickel oxide (NiO) offers intrinsic p-type behavior and high thermal and chemical stability, making it promising as a hole transport layer (HTL) material in inverted organic solar cells. However, its use in this application has been rare because of a wettability problem caused by use of water as base solvent and high-temperature annealing requirements. In the present work, an annealing-free solution-processable method for NiO deposition is developed and applied in both conventional and inverted non-fullerene polymer solar cells. To overcome the wettability problem, the typical DI water solvent is replaced with a mixed solvent of DI water and isopropyl alcohol with a small amount of 2-butanol additive. This allows a NiO nanoparticle suspension (s-NiO) to be deposited on a hydrophobic active layer surface. An inverted non-fullerene solar cell based on a blend of p-type polymer PTB7-Th and non-fullerene acceptor IEICO-4F exhibits the high efficiency of 11.23% with an s-NiO HTL, comparable to the efficiency of an inverted solar cell with a MoOx HTL deposited by thermal evaporation. Conventionally structured devices including this s-NiO layer show efficiency comparable to that of a conventional device with a PEDOT:PSS HTL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA